Stateless vEPC

2014/03/27
Softbank Mobile
Today

EPC Core

RAN

Internet

HSS

PDN-GW

PCRF

MME

SGW

AAA
WHY: All packets incl. control signaling are routed to vEPC.
All IP Network defined in R-8, BUT

Internet

P-GW

S-GW

Access NW (FD-LTE)

Access NW (TD-LTE)

IP over GTP

TUNNELING/Switching

EPC-E

Router

IP Routing

SoftBank
Splitting Control and User Plane

Our Goal

• User packets bypass vEPC
• Network Services (DPI, Charging, etc.) are performed on the user plane
vEPC creates and manages UE’s state.

It should have routing capability based on the state information available in vEPC.
A mechanism is required to reflect states in C-plane to routers in U-plane.

- Routing protocols (BGP)
- Extension to Proxy Mobile IP (being WGLC in NETEXT)
- SDN/OpenFlow
- FORCES WG
Stateless user-plane architecture

We use BGP!!!
Simple Configuration

- Mobility Management
- Access NW (LTE)
- Access NW (WiFi)
- Core NW
- Edge Router
- Router
- Internet

SoftBank
GTP is established to anycast address of EPC-E. It means GTP can be terminated to these virtually grouped EPC-E.
Stateless user-plane architecture for Mobile

1. Signaling (ex. PBU/PBA)
2. BGP Update to setup route per MN (Dynamic)
3. BGP route (Stable)

We have all components in IETF
BGP but not Boeing Model

Boeing Model

Access NW

Internet

Routes are updated across networks

Stateless vEPC

Access NW

EPC

Internet

EPC-E

Router

Routes are updated only at EPC-E
Dynamic Route Update

Every EPC–E have the same routing information of MN.

Dynamic: BGP Update
Remote Next Hop: draft-vandevelde-idr-remote-next-hop
Stable Routes

Aggregated Routes
Dst: 2001:abcd::/32
NxtHop: one of EPC-E

Every EPC-E advertise the aggregated prefix.

Stable: BGP Update
Route Information

Routes at all the EPC–E

<table>
<thead>
<tr>
<th>Destination</th>
<th>2001:abcd:e fgh::/64</th>
</tr>
</thead>
<tbody>
<tr>
<td>NextHop</td>
<td>GTP tunnel</td>
</tr>
</tbody>
</table>

Routes at routers

<table>
<thead>
<tr>
<th>Destination</th>
<th>2001:abcd::/32</th>
</tr>
</thead>
<tbody>
<tr>
<td>NextHop</td>
<td>One of EPC–E</td>
</tr>
</tbody>
</table>

Host Routes are aggregated

2001:abcd:efgh::/64
Asymmetric Route

Routes at all the EPC–E

<table>
<thead>
<tr>
<th>Destination</th>
<th>2001:abcd:e fgh::/64</th>
</tr>
</thead>
<tbody>
<tr>
<td>NextHop</td>
<td>GTP tunnel</td>
</tr>
</tbody>
</table>

Routes at routers

<table>
<thead>
<tr>
<th>Destination</th>
<th>2001:abcd::/32</th>
</tr>
</thead>
<tbody>
<tr>
<td>NextHop</td>
<td>EPC–E A</td>
</tr>
</tbody>
</table>

Path from/to the Internet can be asymmetric path

2001:abcd:efgh::/64
Handover

1. Hand-over Signaling

2. Route Update

New Routes at EPC-E

<table>
<thead>
<tr>
<th>Destination</th>
<th>UE Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>NextHop</td>
<td>GTP tunnel @ New eNB</td>
</tr>
</tbody>
</table>

Internet
Address Delegation

② Reverse Lookup

<table>
<thead>
<tr>
<th>Destination</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>2001:db8::/64</td>
<td>GTP Tunnel</td>
</tr>
</tbody>
</table>

EPC-E has a route of every UE and uses that information to reply RS and DHCP REQ.

① RS or DHCPv6 Req

③ RA or DHCPv6 Res
(Delegate 2001:db8::/64)
Scalability by Operational Configuration

Tokyo

Access NW (LTE)

Osaka

Access NW (WiFi)

Core NW

vEPC

Internet

EPC-Es are divided by region, market, etc.
GTP is established to legacy EPC located in vEPC cloud.
IPv4 Support

IPv4 address allocation (GTP control-plane)

DS-Lite B4 or 464XLAT CLAT (Stateless)

IPv4 over IPv6 or v4v6 translation

DS-Lite AFTR or 464XLAT PLAT (Stateful)

GTP (IPv4-Only)

Internet